Please check the examination details below before entering your candidate information			
Candidate surname		Other names	
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number	
Monday 14 J	anuary	2019	
Afternoon (Time: 1 hour 30 mine	utes) Paper F	Reference WFM01/01	
Further Pure Mathematics F1 Advanced/Advanced Subsidiary			
You must have: Mathematical Formulae and Statistical Tables (Blue)			

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P54951A
©2019 Pearson Education Ltd.

1. The point A (12, 12) lies on the parabola with equation $y^2 = 12x$. The point S is the focus of this parabola. The line I passes through A and S.

(a) Find an equation of the line 1.

(3)

Jan 2019

The line l meets the directrix of the parabola at the point B.

(b) Find the coordinates of B.

(3)

(9)	5=>	49=12

q = 3.

$$(3,0)$$
 $(12,12)$

$$\frac{12-0}{12-3} = \frac{12}{9} = \frac{4}{3}$$

$$f(z) = z^3 - 2z^2 + 16z - 32$$

(a) Show that f(2) = 0

(1)

(b) Use algebra to solve f(z) = 0 completely.

(3)

(c) Show, on a single Argand diagram, all three roots of the equation f(z) = 0

(2)

9)(2)	3-2(2)2+16(2)-32	

=0.

(c)

(0,41)

Im.

(2,0i)

Real

(6,-4)

5=0

2=2

$$\sum_{r=1}^{n} (2r+5)^2 = \frac{n}{3} [(an+b)^2 + c]$$

where a, b and c are integers to be found.

(5)

(b) Use the answer to part (a) to evaluate
$$\sum_{r=0}^{100} (2r+5)^2$$
 (2)

	r=0 (2)
Z(2r+5)2	(b) Z (2r+5)2
= 4 × 2+ 20 × + 25.	Y=1
	$= \frac{100}{3} \left[(2(100) + 9)^2 + 76 \right].$
4Zr2+20Zr+25Z1	=1456900.
$= 4 \times 1 \text{ n(n+1)}(2n+1) + 20 \text{ n(n+1)}$	1456900 + 25 =
+250.	1456925
= 2n(n+1)(2n+1)+10n(n+1)	
3	
125h.	
$\frac{n}{3}$ [26+1) (2h+1) + 30 (n+1)	
+ 757.	

$$\frac{n}{3}$$
 [2(n+1) (2n+1) + 30 (n+1) + 75].

$$\frac{n}{3}$$
 [$2(2n^2+3n+1)+30n+105$]

$$\frac{n}{7} \left((2n+9)^2 + 26 \right)$$

4.

$$f(x) = 2x^3 - \frac{7}{x^2} + 16, \quad x \neq 0$$

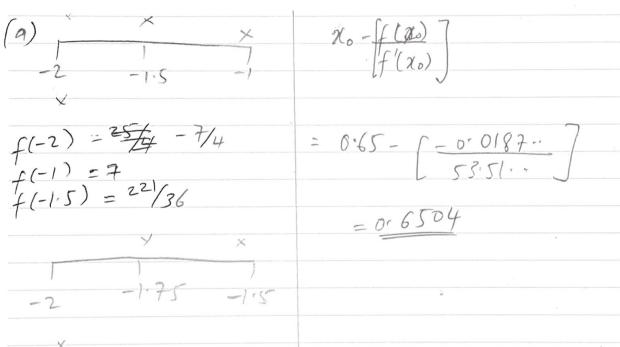
The equation f(x) = 0 has a single root α between x = -2 and x = -1

(a) Starting with the interval [-2, -1], use interval bisection twice to find an interval of width 0.25 that contains α .

(3)

The equation f(x) = 0 also has a single root β in the interval [0.6, 0.7].

(b) Taking 0.65 as a first approximation to β , apply the Newton-Raphson procedure once to f(x) to obtain a second approximation to β , giving your answer to 4 decimal places.



: -26 d L-1.75

b)
$$f'(n) = 6n^2 + \frac{14}{m^3}$$

-0.01879733778

The rectangular hyperbola H has equation xy = 16

The point P, on H, has coordinates $\left(4p,\frac{4}{p}\right)$ where p is a non-zero constant.

(a) Show, using calculus, that the tangent to H at the point P has equation

$$x + p^2 y = 8p \tag{4}$$

Given that the tangent to H at the point P passes through the point (7, 1)

(b) use algebra to find the coordinates of the two possible positions of *P*.

(4)

(9)	4=16	dy = -16	p= 1 or	p=7.	
	X	dx x2	n = 4	u = 7(4)	
			y = 16 14	= 28	,
at	x = 4P.		= 4	$y = \frac{16}{28}$	
	,			= 4	
de	1 = -16	= -/		ſ	

dr (6p2 p2 : P can be (4,4) or $(28,\frac{4}{7})$

$$y - \frac{U}{p} = -\frac{1}{p^2} (x - 4p)$$

6. It is given that α and β are roots of the equation

$$12x^2 - 3x + 4 = 0$$

Without solving the equation,

(a) find the exact value of
$$\frac{2}{\alpha} + \frac{2}{\beta}$$

(b) find a quadratic equation that has roots $\frac{2}{\alpha} - \beta$ and $\frac{2}{\beta} - \alpha$ giving your answer in the form $ax^2 + bx + c = 0$, where a, b and c are integers to be found.

(6)

(3)

(a) $d+\beta = -6 = \frac{3}{9} = \frac{1}{12}$	Product of roots.
$\Delta \beta = C = 4 = 1$	$\left(\frac{2}{d}-\beta\right)\left(\frac{2}{\beta}-\alpha\right).$
$\frac{2}{d} + \frac{2}{\beta} = \frac{2(a+\beta)}{d\beta}$	4-2-2+dB.
= 2(0.25) = 3	4 + 1 - 4
(b) Sum of roots.	<u>- 25</u> .
$\frac{2-\beta+2-\alpha}{\beta}$	$\therefore x^{2} - \frac{5}{4}x + \frac{25}{3} = 0.$
$\frac{2+2}{d}$ β	(2x2-15x+100=0.
$\frac{3}{2} - 1\left(\frac{1}{4}\right)$	
= 5	

7.

$$\mathbf{P} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$

(a) Show that $P^3 = 8I$, where I is the 2 × 2 identity matrix.

(3)

(b) Describe fully the transformation represented by the matrix P as a combination of two simple geometrical transformations.

(4)

(c) Find the matrix P^{35} , giving your answer in the form

$$\mathbb{P}^{35} = 2^k \begin{pmatrix} -1 & a \\ b & -1 \end{pmatrix}$$

where k is an integer and a and b are surds to be found.

(2)

(a)
$$\int_{0}^{3} \frac{(b)}{s + 2} = \frac{1}{2} \cdot \frac{1}$$

20

8. (i) Prove by induction that, for $n \in \mathbb{Z}^+$

$$\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1 + 4n & -8n \\ 2n & 1 - 4n \end{pmatrix}$$
 (5)

(ii) A sequence of positive numbers is defined by

$$u_1 = 8$$
, $u_2 = 40$
 $u_{n+2} = 8u_{n+1} - 12u_n$ $n \ge 1$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 6^n + 2^n \tag{5}$$

since true for n=1:. True for hEZ+

Question 8 continued	
(ii) Basis	Conclusion.
(et n=1 4, = 6'+2'=8 (:. true) n=2	Since true for n=1, 2 :.
42=62+22 = 40 (:. HUP	
Assumption. Cet's assume true for n=k and n=ktl.	
4x+2=8UR+1-12UK.	
UK = 6K + 2K	
UKH = 6 KH + 2 KT)	
Induction. Of n=1c+2.	
UK+2= 8UK+1-12UR	
=8(6k+1+2k+1)-12(6k+1	2 ^k)
= 48(6 k)+16(2 k) -12(6 h	(+ 2 ×)
= 36(6") + 4(2")	
$=6^{2}(6^{k})+2^{2}(2^{k})$	
:. = 6 K+2 + 2 K+2	
: hue for n=k+2.	

Leave blank 9. The complex numbers z_1 and z_2 are given by

$$z_1 = -1 - i$$
 and $z_2 = 3 - 4i$

- (a) Find the argument of the complex number z₁ z₂. Give your answer in radians to 3 decimal places.
- (b) Find the complex number $\frac{z_1}{z_2}$ in the form a + ib, where a and b are rational numbers.
- (c) Find the modulus of $\frac{z_1}{z_2}$, giving your answer as a simplified surd. (2)
- (d) Find the values of the real constants p and q such that

$$\frac{p + iq - 8z_1}{p - iq - 8z_2} = 3i$$

$$(5)$$

(a)
$$\frac{1}{2} - \frac{1}{2} = (-1 - i) - (3 - 4i)$$

$$= \frac{1}{25}$$

$$= -4 + 3i$$

$$= \frac{1}{25} - \frac{7}{25}i$$

$$= \frac{1}{25} - \frac{7}{25}i$$

$$= \frac{1}{25} - \frac{7}{25}i$$

$$= \frac{1}{25} - \frac{7}{25}i$$
(b) $\frac{1}{2} = -1 - i (3 + 4i)$

$$\frac{1}{2} = \frac{1}{25} - \frac{1}{25}i$$
(c) $\sqrt{\frac{1}{2}} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(d) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$

$$= \frac{1}{25} - \frac{7}{25}i$$
(e) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$
(f) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}i$
(g) $\frac{1}{2} + \frac{1}{2}i$
(